

DID YOU KNOW?

A young brain is developmentally different than a mature one.

Neuro Nugget:

The young brain (age 5-20) does not have a fully activated prefrontal cortex, or executive functioning center, so youth often struggle with:

An underdeveloped prefrontal cortex means...when we ask an athlete why she just made a mistake, she often responds with anxiety, attitude, tears, or an "I don't know." We may think she's being sassy but she's actually being literal and honest. She often does not know,

TWO SUCCESS STRATEGIES:

To increase executive function and skill success in the young brain, do this:

- Provide a one-two sentence explanation of a concept
- Physically model the concept
- Ask athlete to repeat the explanation and demonstrate the modeled concept with you
- Praise the correct action

- Provide short, calm, descriptive feedback and more modeling if an adjustment needs to be made
- Repeat process multiple times (4-20x) over several days so athlete develops competence and confidence with the concept
- Once the concept has been mastered, briefly explain WHY it needs to be done that way

THIS type of instruction is what increases an athlete's success.

APPLY STRATEGIES:

We can apply this strategy in any learning situation: loading the dishwasher, solving a linear equation, moving on after a strikeout, or having a respectful face-to-face conversation.

When we provide explicit teaching of a concept in this way, we strengthen the dendritic and synaptic connections and develop a neural pathway in the young brain for a skill to be mastered and to make it stick!

PUT IT INTO PLAY:

We challenge you to apply this strategy at your next practice when teaching a concept.

You haven't taught until they have learned. John Wooden